2024年4月17日水曜日

直角三角錐の面の4平方の定理とベクトルの外積

【問】下図の直角三角錐の斜面の三角形ABCの面積Sを計算せよ。

【解答】

(三角形ABCの面に垂直な法線ベクトルを導き出す)
三角形ABCを含む面の方程式は以下の式で表せます。

この式は、三角形を含む平面上の位置ベクトル(X,Y,Z)と他のベクトルの内積を表す以下の式です。

この式から、三角形を含む平面上の2つの位置を結ぶベクトル(その位置ベクトルの差)と所定ベクトルの内積が、いつでも0になる、以下の式が成り立ちます。


この式は、この所定ベクトルが三角形を含む平面に垂直である事を示しています。よって、この所定ベクトルが面ABCの法線ベクトルであることがわかります。

3次元の立体上の三角形ABCの面積は、XY平面上の三角形ABOを(1/cosθ)倍に逆射影して計算することができます。


(4平方の定理)
 この計算の途中で、以下の式であらわされる、
直角三角錐の3面の、直角三角形の面積の2乗の和が、直角三角錐の斜面の三角形の面積の2乗になるという、

ピタゴラスの定理に類似した公式(4平方の定理)が成り立っている。

《4平方の定理》

と表現することができる。
そうして、以下の式で計算できる。


(面積はベクトルで表現できる)
 4平方の定理が意味することは、空間における三角形の面積はベクトルで表現できるということを意味する。
(1)三角形の面積のXY平面への正射影は、ベクトルであらわした面積ベクトルのZ軸方向成分であり、
(2)三角形の面積のYZ平面への正射影は、ベクトルであらわした面積ベクトルのX軸方向成分であり、
(3)三角形の面積のZX平面への正射影は、ベクトルであらわした面積ベクトルのY軸方向成分である。

(平行四辺形の面積の計算)
 以下で、大学レベル以上での、2つのベクトルの張る平行四辺形の面積をベクトルで分解して計算する方法を書きます。
以下の考察の結論は、平行四辺形の面積は、ベクトルの演算によってあらわせるということです。
そのベクトルの演算が、ベクトルの外積を意味します。

 以下の内容は大学生でも理解が難しい事も含まれていると思いますので、理解出来なくても気にしないで下さい。


 平行四辺形を張るベクトルを要素に分解して要素のベクトルの張る平行四辺形の面積計算し、その要素の平行四辺形の面積を合計して元のベクトルの張る平行四辺形の面積を計算します。
 以下のように、座標系が回転しても結果が変わらないように面積の計算規則を定める点がポイントです。
 X座標軸を反時計まわりに90°回転させてY座標軸に重ねると、Y座標軸は反時計まわりに90°回転してX座標軸の負の方向を向いて重なる。そのため、XベクトルとYベクトルの張る(ベクトルの順と成す角の向きを考えた)平行四辺形の面積を正にした場合、このように座標を回転させても面積が変わらないようにするには、必然的に、ベクトルの順と成す角の向きを考えた、Yベクトルと、X方向の負の方向を向いたベクトルの張る平行四辺形の面積を正にする必要がある。それは、YベクトルとX方向の正の方向を向いたベクトルの張る平行四辺形の面積を負にしなければならない事を意味する。

 下図の様に、ベクトルAとBが平行な場合にベクトルAとBが張るつぶれた平行四辺形の面積は0である。
その平行四辺形の面積を、ベクトルAとBをそれぞれ、X方向のベクトルとY方向のベクトルの和で表し、その和のベクトルAとBの積を、X方向のベクトルとY方向のベクトルの積の和に展開して、以上で定めた計算規則に従って計算すると、その計算結果も0になる。
また、同じ方向を向くベクトルAとBが張るつぶれた平行四辺形は、その平行四辺形を回転させてどの方向を向かせても、同じ0の値の面積が計算できる。
 平行四辺形を張るベクトルA及びBをX方向のベクトルとY方向のベクトルに分解すると、ベクトルAの分解されたベクトルとベクトルBの分解されたベクトルの積の組み合わせが作る平行四辺形が4個できる。その4個のうち2つの平行四辺形は、同じ方向のベクトルの張るつぶれた平行四辺形であり、その面積が0なので無視できる。
そして、その4個の平行四辺形の面積の和で、ベクトルAとBの張る平行四辺形の面積を計算したい。
上の例では、少なくとも面積が0のつぶれた平行四辺形の面積の計算では、その0の面積が、ベクトルAの分解されたベクトルとベクトルBの分解されたベクトルの積の組み合わせが作る4個の平行四辺形の和と同じになる演算ができる様になった。

 次に、下図のように、ベクトルAとベクトルBの張る平行四辺形の面積を、同じ面積を維持するように高さを保たせて変形した平行四辺形にして面積を求める手法を、ベクトルAを分解したベクトルとベクトルBとの積の和を計算する手法に対応させて面積を計算する。
 上図の、平行四辺形の変形と分解操作に対応するベクトルの積の式の分解操作の計算が以下の式であらわせる。
 
式0の様に、ベクトルAとベクトルBの(順番を考えた)積はそのベクトルAを分解した各ベクトルとベクトルBの張る各平行四辺形の面積の和に対応付けられる。

すなわち:
(ベクトルAのベクトルBに対する垂直成分の長さ)×(ベクトルBの長さ)
が平行四辺形の面積を表す。
一方、ベクトルAを分解して、
ベクトルA=ベクトルA1+ベクトルA2
とすると:
ベクトルA1のベクトルBに対する垂直成分の長さと、
ベクトルA2のベクトルBに対する垂直成分の長さの和は、
ベクトルAのベクトルBに対する垂直成分の長さに等しい。
そのため、
ベクトルAとベクトルBが張る平行四辺形の面積
=(ベクトルA1とベクトルBが張る平行四辺形の面積)
+(ベクトルA2とベクトルBが張る平行四辺形の面積)
の関係が成り立つ。
その関係は、
ベクトルA×ベクトルB
=(ベクトルA1×ベクトル B)
+(ベクトルA2×ベクトルB)
に分解した式で表すことができる。

すなわち、ベクトルが張る平行四辺形の面積についての分配法則に対応して、ベクトルの加法と(ベクトルの順番を考えた)乗法についての分配法則が共に成り立っている。

 また、上図の様に、ベクトルAとベクトルBの張る平行四辺形を、
その平行四辺形を構成する2番目のベクトルBを、ベクトルAのk倍のベクトルを加えて、ベクトルAに対する高さを保たせて歪めたベクトルB2に変える。
そうして、ベクトルAとベクトルB2の張る平行四辺形を考える。
その場合、以下の式が成り立つ。
ベクトルの加法と乗法についての分配法則により、
ベクトルA×ベクトルB2
=(ベクトルA×ベクトルB)
+(ベクトルA×k(ベクトルA))
と表すことができる。

ここで、
(ベクトルA×k(ベクトルA))
は面積が0のつぶれた平行四辺形をあらわしているので、その面積は0である。

それゆえ、
ベクトルA×ベクトルB2=ベクトルA×ベクトルB
が成り立つ。
この式は、底辺の長さが同じで高さが等しい平行四辺形の面積が等しい事実と一致している。
この様に、平行四辺形の面積を表すベクトルの加法と乗法の分配法則が、変形した平行四辺形の面積の法則と一致して、成り立っている。

 以上の演算規則で定めた、X座標方向の単位ベクトルとY座標方向の単位ベクトルが作る平行四辺形の面積の符号に合わせて、エディントンの計算記号εmpを定める。
それにより、ベクトルAの分解されたベクトルとベクトルBの分解されたベクトルの積の組み合わせが作る4個の平行四辺形の面積の和は、
(m=1,2; p=1,2) {εmp}=a-a
で表せる。
この面積の和が、ベクトルAとベクトルBの張る平行四辺形の面積である。

リンク:
高校数学の目次

2024年3月27日水曜日

模様数と色模様毎の確率の積を考える確率の問題

【問1】
 赤玉3個と青玉2個と白玉1個が入っている袋から無作為に1個を取り出し、 色を確認した後、もとに戻す。これを3回繰り返すとき、 全ての色の玉を取り出す確率を求めよ。

この問題の解答は、ここをクリックした先にあります。

 リンク:
高校数学の目次


2024年3月20日水曜日

5人を区別せずに3組に分ける(0人の組もある)組分け数

【問1】
5人を区別せずに(0人もある)(名前で区別された)3組に分ける組分けの数を求めよ。すなわち:

上図のような3組に、5人を区別せずに分ける(0人の組があっても良い)組み分けの数を求めよ。


【解答】
 この問題は、3種の玉から重複を許して5個を選ぶ組み合わせの数を求める問題と同じです。

上図のように①組の行と②組の行と③組の行との3つの行を有し、横の長さが5の格子を考える。格子のA点からB点まで、①の行から③の行まで格子を辿って、右と上に進む最短経路を描く。

上図で、
①の数=(①行の、A点から昇り階段までの長さ)
②の数=(②行の、階段と階段の間の長さ)
③の数=(③行の、階段からB点までの長さ)
とすると、

A点からB点まで、格子をたどって右と上に進む1つの最短経路は、
区別しない5人を、①に分ける数と②に分ける数と③に分ける数の1つの組合せに
1対1で対応する。
その対応の特殊な例では、
①組の数が5人、②組の数が0人、③組の数が0人の組み合わせは、下の図の経路に対応する。

①の数が0、②の数が0、③の数が5の組み合わせは、下の図の経路に対応する。


そのため、A点からB点までの全ての経路の数は、
3組に区別しない5人を(0人の組があっても良く)分ける組分けの数と等しい。

上図の経路は、
→→↑→→↑→
とあらわせる。
すなわち、経路は、(↑)2つと(→)5つの順列であらわされる。
(A点からB点までの経路は、(↑)2つと(→)5つの順列と1対1対応する)

そのため、図のA点からB点までの全ての経路の数は、(↑)2つと、(→)5つが作る全ての順列の数と等しい。
その数は、
(2+5)!/(2!×5!)
(2+5)(2+5)
=21
になる。
その21個の組分けを具体的にあらわすと、以下の21個になる。

(解答おわり)


【問2】
 5人を区別せずに(名前で区別された)3組に(どの組も1人以上入れて)分ける組分けの数を求めよ。

【解答】
 問2は、上図のA点からB点までの経路において、(↑)2つの各々を、(→)5つが隣接する4つのすき間のうちの2つを選んで、そこに(↑)を入れる。
その入れ方ならば、どの(↑)においても、(↑)の前にも後にも必ず(→)が1つあることになる。そのため、5つの(→)が、(どの組も1人以上入れて)3つに分けられる。
その組分けの数が求める数である。
その数は、
=6
になる。
その6つの組分けを具体的にあらわすと、以下の6つになる。

(解答おわり)

【問3】
 5人を区別せずに(区別されない)3組に(どの組も1人以上入れて)分ける組分けの数を求めよ。

【解1】
 問3は、問2の(名前のある3つの組に)区別しない5人を分ける解き方の解の全ての組み分けを1つ1つ調べる。

そうして、組を区別しない場合には、組名を入れ替えると同じ組分けになる組分けのグループをまとめて1つの組み分けに分類する。

は、組名を入れ替えるとできる組み分けのグループなので、組を区別しない場合には同じ組分けと分類する。

は、組名を入れ替えるとできる組み分けのグループなので、組を区別しない場合には同じ組分けと分類する。
 この調査の結果、組を区別しない組分けは、
(3,1,1)と(2,2,1)との2つだけである。
(解答おわり)

【解2】
 問3は、組を区別しない組分けを、順次に場合分けして数える方が早く解答が得られる。
組を区別しないのですから、
(3,1,1)も(1,3,1)も同じです。
そうなので、人の数の多い組を最初に書いて、同じ組分けを代表させます。
(3,1,1)
です。

次に、
(2,X,X)
とするとき、人の数の多い組を先に書くならば、
(2,2,1)
しか書きようがありません。

その2つ以外には、
5人を、各組に1人以上入れて、(区別しない)3つの組に分ける組分けはありません。
以上の結果、
組を区別しない組分けは、
(3,1,1)と(2,2,1)との2つだけである。
(解答おわり)

【問4】
 (各人が区別された)5人を(0人の組があっても良く)(名前で区別されない)3組に分ける組分けの数を求めよ。

【解答】
 (各人が区別された)5人を(0人の組があっても良く)(名前で区別されない)3組に分ける組分けの数は、
「組に区別なく人数指定なく(各人を区別できる)人を組分けする数と組分け問題の本質」
のページの【問1】の解き方で解くことができる。
「(1)(各人を区別できる人を)A組1人以上、B組1人以上、C組1人以上の場合での、ある1つの組分けは、
組の名前を付け替えると、3!の異なる組分けができる。
(2)A組0人、B組1人以上、C組1人以上の場合での、ある1つの組分けも、
組の名前を付け替えると、3・2=3!の異なる組分けができる。
(3)しかし、A組0人B組0人C組5人の場合の、1つの組分けは、
組の名前を付け替えても、3つの組分けができるだけである。(0人のA組と0人のB組の組の名前を付け替えても、組の名前を付け替える前と全く変わらない)」

 以上の(1)(2)(3)の場合毎に、組の区別なく3つの組に分ける組み合わせの数を以下のように計算する。すなわち、組の名前を付け替えることで出来る複数の組分けは、同じ組分けであるとして1つと数える。
 その数え方による以下の計算により組み合わせの数を求める。
{(3)の場合}/3+{(1)と(2)の場合}/(3!)=

(解答おわり)

リンク:
組分け問題全パターン
場合の数と確率
高校数学の目次

2024年2月26日月曜日

3つの空間ベクトルが同一平面上にある条件

【問1】
空間内の4点O(0,0,0),A(1,2,5),B(2,5,1),C(1,1,k)が同一平面上にあるとき、
kの値を求めよ。
 言いかえると、直線OAと直線BCが同一平面にあるときkの値を求めよ。
 更に言いかえると、3つのベクトルOAとベクトルBCとベクトルABが同一平面にあるときkの値を求めよ。

【問2】
問1の解のkの値の直線OCと直線ABの交点PをあらわすベクトルOPを求めよ。

この問題の解答はここをクリックした先にあります。

リンク:
高校数学の目次

2024年2月24日土曜日

ベクトルの内積であらわされた2直線の交点

直線の方程式の一般形は、
ax+by-c=0,
である。

すなわち、直線の式は、下図のようにベクトルの内積であらわされた式である。


【課題】ベクトルの内積であらわされた以下の式(1)の直線と、式(2)の直線との交点のベクトルを計算する。


【解答】
「2元連立方程式をベクトルの内積を使って解釈する」のページの連立方程式の解の式(7)を参考にする。
そのページの式(7)と同じ形の、以下の式(3)で2直線の交点のベクトルzを表すと、式(4)と式(5)が成り立つ。

そのため、交点のベクトルzが以下の式(8)であらわされる。式(8)を具体的にあらわすと式(9)であらわせる。


(解答おわり)
 この解は、交点の位置ベクトルzを、直線に平行なベクトルの合成であらわす解である。


リンク:
ベクトルの視点で見える直線の式の意味
高校数学の目次

2023年11月21日火曜日

ベクトルで楕円の2つの接線の交点を求める

【問1】
 原点Oを中心にするX軸方向の半径をaとしY軸方向の半径をbとする楕円に対して、
その楕円上の点A(x1,y1)から引いた接線と、
点B(x2,y2)から引いた接線の交点P(x,y)の位置ベクトルを求めよ。


この問題の解答はここをクリックした先にある。

リンク:
円の極の座標の解の変換
高校数学の目次