2013年10月19日土曜日

(18)面の法線への射影を利用した連立方程式の解法



【問】以下の連立方程式を解いて未知数sを求めよ。

【解答】
 連立方程式はベクトル方程式とみなして解くとやさしくなります。以下のようにベクトルの張る面に垂直な法線への射影を利用すると連立方程式の1つの未知数sを素早く求めることができます。

この式の水平面を張るベクトルbとcを、もっと使いやすいベクトルb’とc’に変更します(同時に未知数wとuも変わります)。
(ここで、水平面には変わりがありません)

このように、成分の1つを0にしたベクトルb’とc’で水平面を張ります。
このベクトル方程式を以下のようにして解きます。 


(解答おわり)

① 先ず、問題の連立方程式の右辺のベクトルeのY成分のベクトルの高さを6zとしました。
② ベクトルbとcの張る面を水平面とする。ベクトルcのY成分の高さは①との関係で、高さ2zです。
③ ベクトルbのY成分の高さは①との関係で、高さzです。
④ ベクトルaのY成分の高さは①との関係で、高さ3zです。
⑤ ベクトルcは水平面上のベクトルなので、そのX成分はY成分による高さ2zを打ち消す高さ-2zです。
⑥ ベクトルeのX成分の高さは⑤との関係で、高さ-2z・2です。
⑦ ベクトルaのX成分の高さは⑤との関係で、高さ2zです。
⑧ ベクトルbは水平面上のベクトルなので、そのZ成分はY成分による高さzを打ち消す高さ-zです。
⑨ ベクトルeのZ成分の高さは⑧との関係で、高さ2zです。
⑩ ベクトルaのZ成分の高さは⑧との関係で、高さz/2です。

問題の連立方程式のsに掛かる高さは(⑦+④+⑩)であり、右辺の高さは(⑥+①+⑨)です。その比を計算してsが得られました。

【別解】ベクトルの外積を利用して計算すると、以下のように答えが得られます。

(解答おわり)
ベクトルの外積を利用する方が速そうです。


リンク:
高校数学の目次

0 件のコメント:

コメントを投稿