2018年7月18日水曜日

ベクトル方程式の意味

【連立方程式(その1)】
 以下の1つのベクトル方程式6は、以下の式1と式2の連立方程式を1つにまとめた式です。

そのため、2つの未知数sとuを、1つのベクトル方程式6から求めることができます。

 別の観点から説明すると、ベクトルa、b、eは2次元のベクトルです。全ての2次元ベクトルは、2つの独立したベクトルの合成であらわすことができ、1つのベクトル方程式で、2つの未知数を求めることができます。

【連立方程式(その2)】
 以下の1つのベクトル方程式8は、以下の式1から式3の3つの式の連立方程式を1つにまとめた式です。

この1つのベクトル方程式8は、3つの式(式1と式2と式3)ですので、未知数3つを求めることができます。
そのため、未知数sとtとuを、式8から求めることができます。

  別の観点から説明すると、ベクトルa、b、c、eは3次元のベクトルです。全ての3次元ベクトルは、3つの独立したベクトルの合成であらわすことができ、1つのベクトル方程式で、3つの未知数を求めることができます。

このように、ベクトル方程式は、1つの式だけで、それが使うベクトルの次元の数だけ、未知数を求めることができます。

リンク:
高校数学の目次

2018年7月16日月曜日

三角関数を勉強する意味

三角関数は、単位ベクトルのx成分とy成分を表わす関数です。
 三角関数を勉強する意味は、単位ベクトルの成分の間の関係を学ぶという意味を持ちます。
もし、三角関数という表現を使わない単位ベクトルの成分の関係をあらわす公式があれば、それは三角関数の公式でもあるという意味を持ちます。

また、三角関数の公式をベクトルの成分の記号を使って表わすと分かり易く表現できることもあります。

 高校生は、大人として完成する時期にいます。そのため、高校生は、もう大人として、自らで学ぶべき適切な知識を自ら発見して学んでいくのが良いと考えます。
 ベクトルの概念を教えない風潮がありますが、高校生になった学生は、そういう風潮に押し流されず自ら学び、単位ベクトルの成分を表わす三角関数を学んでいくのが良いと考えます。

リンク:
高校数学の目次

2018年7月11日水曜日

連立方程式の計算をやさしくする

連立方程式は、以下の様にすると計算が易しくなります

【問題1】
以下の連立方程式を解け。

【通常の解き方】
以上の式3と式4でxとyが求められた。
(解答おわり)

【工夫した解き方】
先ず、式1と式2の連立方程式から、以下の式5を作ります。
この式5と式1の連立方程式を解きます。
以上の式6と式7でxとyが求められた。
特に、この式7の計算は、楽に計算できた。
(解答おわり)

このように、連立方程式の係数を小さくする式の変換をしてから解くことで、連立方程式の計算が楽になりました。

【問題2】
以下の連立方程式を解け。

【工夫した解き方】
 先ず、式1と式2の連立方程式から、以下の式3を作ります。
 この式3と式1の連立方程式を解きます。
以上の式4と式5でxとyが求められた。
特に、この式5の計算は、大きな分母を持つ分数の計算でしたが、楽に計算できました。
(解答おわり)

(補足)
 以上の計算において、最後のyの計算が楽にできたのは、先に得たxの値を代入する式(問題2の式3等)のyの係数が1にしてあったからです。 

リンク:
中学数学の目次
高校数学の目次

2018年7月7日土曜日

裏正弦定理

正弦定理の裏の定理の、裏正弦定理があります

下図のように三角形の周りに、その外接円とその円の中心(外心)とを描きます。
上の図で、三角形の頂点の角度∠A=θが外接円の円周角であり、それは中心角∠BOCの2分の1であることに注目すると、
三角形の外接円の半径Rと、三角形の頂点の角度∠A=θとその頂点Aへの対辺BCに対する外接円の中心Oの高さmとの間に、以下の関係式が成り立つことがわかります。
すなわち、∠A=θであらわすと、
この式を変形すると、
です。
同様に、
が成り立ちます。
       
これらが裏正弦定理です。
裏正弦定理は、上の図の様に、円周角の定理と密接に結びついた定理です。

 円周角に関係が深い問題は正弦定理又は裏正弦定理を使って解きましょう。

(後に学ぶ余弦定理は円周角に関する問題を解くのが苦手で、高校2年で学ぶベクトル方程式も円周角に関する問題を解くのが苦手です。それらの問題に正弦定理を使って解いてください。)

リンク:
三角形の外心の高さ
余弦定理
正弦定理の応用(三角形の面積)
sinθとcosθの連立方程式で式からθを除去する方法

三角形の重心
三角形の垂心
三角形の内心
高校数学(三角比・図形)一覧
高校数学の目次

2018年7月2日月曜日

ベクトルの張る三角形の面積

 2つのベクトルaとbの張る三角形の面積はベクトルの外積で計算できます。
 しかし、その三角形の面積をベクトルの内積であらわそうとする場合は、ベクトルaを反時計回りに90度回転させたベクトルa又はベクトルbを反時計回りに90度回転させたベクトルbを考えて、内積
・b=-b ・a
の2分の1で三角形の面積をあらわす事が望ましいです。
各ベクトルの成分は以下の通りです。

 ベクトルの内積演算には、三角形の面積をあらわすことが不得意だという弱点があります。
 その弱点を補うために、与えられたベクトルaやbに加えて、それらを90度回転させたベクトル又はベクトルを追加して計算に用います。その新たに加えたベクトルを使った内積の計算によって三角形の面積があらわせるのです。
  そうしないで、すなわち、ベクトル又はベクトルbを追加しないで、無理やりにベクトルの内積で三角形の面積を表わそうとすると計算が難しくなります。

リンク:
ベクトルの直線と点との距離及びベクトルの張る三角形の面積
高校数学の目次


三角形の3頂点のベクトルの張る三角形の面積比の公式

【問】
上図の三角形ABC内の点Xから頂点A,B,Cに引いたベクトルa,b,cの間に式1の関係が成り立つ場合に、
そのベクトルの張る三角形の面積の間に式2の関係が成り立つことを証明せよ。

この問題の解答は、ここをクリックした先にあります。

リンク:
高校数学の目次


2018年7月1日日曜日

ベクトルの概念の範囲

 ベクトルの概念により、先ずは、
座標(x,y)を2次元ベクトルであらわすことができます。
座標(x,y,z)も3次元ベクトルであらわすことができます。

しかし、ベクトルの概念の適用範囲は、この種の座標の表現手段に留まりません。

多項式:
1+2x+3x+4x
は、
(1,2,3,4,0,0,0,0,0,0,・・・・)
という無現次元のベクトルであらわすことができ、
多項式:
9+8x+7x+6x+5x+4x+3x+2x+x
は、
(9,8,7,6,5,4,3,2,1,0,0,・・・・)
という無現次元のベクトルであらわすことができます。

また、
三角関数群の多項式:
9+8sinθ+7sin(2θ)+6sin(3θ)+5sin(4θ)+4sin(5θ)+3sin(6θ)
も、
(9,8,7,6,5,4,3,0,0,0,・・・・)
という無現次元のベクトルであらわすことができます。


 このように、ベクトルを表わす場合、そのベクトルの要素が何を表わしているかという前提条件が必須な条件として存在します。

(補足)
 そもそも、三角関数も、以下の式であらわすことができます。
https://schoolhmath.blogspot.com/2017/06/blog-post_35.html
(マクローリン展開とオイラーの公式参照)

リンク: 
高校数学の目次