2011年8月25日木曜日

2つの放物線の共通接線

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
佐藤の数学教科書「微分」編の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(接線を求める式に重根が含まれるとは限らない。)

【問1】2つの放物線
y= x (式1)
y=-(x-2) (式2)
の共通接線の方程式を求めよ。


(解答の方針)
式1の接点A(a,b)での接線の式をあらわし、
式2の接点C(c,d)での接線の式をあらわし、
それらの接線の式が等しいとする方程式を書いて、
その方程式を解けば良い。

ただし、その方程式を解く過程で計算間違いをすると正しい答えが出ない。
そのため、計算間違いを少なくする問題の解き方を工夫する。

(解答)
y= x (式1)
y=-(x-2) (式2)

(1)
式1を微分して式1のグラフの傾きを求める。
y’=2x (式3)
接点A(a,)での式1の接線の式は
傾きy’=2a
だから、以下の式になる。
y-a=y’(x-a) 
y-a=2a(x-a) (式4)

(2)
式2を微分して式2のグラフの傾きを求める。
y’=-2(x-2) (式5)
接点C(c,-(c-2))での式2の接線の式は
傾きy’=-2(c-2)
 だから、以下の式になる。
y+(c-2)=y’(x-c)
y+(c-2)=-2(c-2)(x-c)
この式を、
c-2=e (式6)
とおいて、以下のように単純な式であらわす。
y+e=-2e(x-c) (式7)
このように単純な形に式をあらわすことで、計算が簡単になり、計算間違いを少なくすることができる。
式7に残っているcもeにおきかえる。
y+e=-2e(x-e-2) (式8)

(3)
接線の式8と4の傾きが等しい条件式を求める。
-2e=2a
e=-a (式9)
(4)
式4と式8のそれ以外の項も等しくなる条件式を求める。
+2e(-e-2)=-a+2a・a
-e-4e=a
式9を代入してeをaにおきかえる。
-a+4a=a
-2a+4a=0
a(a-2)=0
a=0 (式10)
or
a=2 (式11)

(5)式10の場合:
a=0 (式10)
式10を式4に代入。
y=0 (式12)

(6)式11の場合:
a=2 (式11)
式11を式4に代入。
y-4=4(x-2)
y=4x-4 (式13)

以上の結果、式1と2の放物線の共通接線の方程式は、
y=0 (式12)
と、
y=4x-4 (式13)
である。
(解答おわり)

リンク:
高校数学の目次

2011年8月24日水曜日

3次関数の曲線の形

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
佐藤の数学教科書「微分」編の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(接線を求める式に重根が含まれるとは限らない。)

【覚えておくべきこと】3次関数の曲線
y= x+ax+bx+c (式1)
の形は、中心点Aを中心にして点対象な形をしている。

その中心点Aのx座標は、式1を微分した式、
y= 3x+2ax+bx (式2)
の2次関数のグラフが左右対称になる対称軸の座標、
x=-a/3
である。


式1を微分した2次関数のグラフが、その対称軸の左右で対称であるので、
式1のあらわす3次関数のグラフは、中心点Aの左右で傾きが等しい。
そのため、式1のあらわす3次関数のグラフが、中心点Aを中心にして点対象な形になる。


リンク:
高校数学の目次

2011年8月22日月曜日

放物線の極線

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
佐藤の数学教科書「微分」編の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(接線を求める式に重根が含まれるとは限らない。)

【難問】放物線
y= x (式1)
に、点P(a,b)を通る傾きm直線が交差する交点をQとRとするとき、
点Qでの放物線の接線と点Rでの放物線の接線との交点をSとするとき、
傾きmを変化させたとき、Sはある直線上にあることを示せ。

この問題は、以下の問題と同じ問題です。
【問題2】放物線
y= x (式1)
に、点P(a,b)を通る直線が交差する交点をQとRとするとき、
点Qでの放物線の接線と点Rでの放物線の接線との交点Sは、点Pから放物線に引いた2つの接線の接点を結んだ直線上にあることを示せ。

また、以下の問題とも同じです。
【問題3】放物線
y= x (式1)
に、点P(a,b)を通る傾きmの直線が交差する交点をQとRとするとき、
点Qでの放物線の接線と点Rでの放物線の接線との交点Sは、mの値に関係なく、ある直線上にあることを示せ。

(解答の方針)
この問題は、放物線外の一点Pから、放物線に弦を無数に引いたとき、弦の両端における2本の接線の交点を結んでできる直線(これは極線と呼ばれている。その極線を作る元になる点Pは「極」と呼ばれている)を求める、有名な問題です。

この問題は、何度でも解いて練習すべき問題として推薦します。

(解答)
(1)
点P(a,b)を通る傾きmの直線を以下の式で定義する。
y-b=m(x-a) (式2)
点Q(c,d)とR(e,f)との座標c及びeを求める式は、式1に式2を代入してyを消去することで求められる。
=m(x-a)+b
-mx+ma-b=0
-mx+ma-b=(x-c)(x-e) (式3)
(2)
点Q及び点Rでのx=t(t=c,e)の位置でも接線の傾きは式1を微分することで求められる。
y’=2x (式4)
式4から、x=tの位置での接線の傾きは2tである。
よって、x=tとなる放物線上の点の接線の式は、以下の式であらわせる。
y-t=2t(x-t)
この式をtについて整理する。
-2xt+y=0 (式5)
この式5は、
(x,y)が、点Qの接線とRの接線とで共通な値となるとき、
すなわち、両接線の交点S(x,y)の座標をあらわすとき、
tに、点Q(c,d)の座標値cを代入して成り立つ式であり、
かつ、R(e,f)の座標値eをtに代入して成り立つ式である。
よって、式5は、S(x,y)の座標に関する式で、t=c、t=eを根に持つ二次方程式である。
-2xt+y=(t-c)(t-e) (式6)
(3)
式3と式6を比べると、
-mx+ma-b=(x-c)(x-e) (式3)
-2xt+y=(t-c)(t-e) (式6)
式3と式6の根と係数の関係より、
-m=-(c+e)=-2x
m=2x (式7)
ma-b=ce=y
ma-b=y (式8)
式7と8よりmを消去すると、
2xa-b=y
y=2ax-b (式9)
点Sは、この直線9(極線)上にある。
(解答おわり)

【注意】

この問題を、点Sの軌跡を求める問題と考える場合は、点Sの軌跡は式9であらわされる直線のうち、式1の放物線で切り取られる弦の外側の部分を描くことに注意。

リンク:
高校数学の目次

2011年8月21日日曜日

4次曲線の2点への接線

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
佐藤の数学教科書「微分」編の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(接線を求める式に重根が含まれるとは限らない。)

【難問】4次曲線
y= x-x+x (式1)
に、直線
y=ax+b (式2)
が相異なる2点で接するときa、bの値を求めよ。

(解答の方針)
問題の条件をあらわす方程式の形に従って、問題の解き方が決まってしまう。問題を解き易い形に問題の条件をあらわすには、問題の条件を可能な限り図形であらわして問題の条件をどういう図形であわらすかを工夫することが大切です。

この問題では、グラフを想像しながら方程式(のあらわすグラフ)を変形して問題を解くことが大切なポイントです。


4次曲線は、上の図のようにあらわせる。
式1に式2を代入すると、
-x+x=ax+b
-x+(1-a)x-b=0 (式3)
この式3が、接点のx座標x=αとx=βとで成り立つ、しかも、αとβそれぞれが重根であることが、式2の直線が式1のグラフに2点で接する接線になる条件である。

ここで、そのような式3を求めるということは、
y=x-x+(1-a)x-b=0 (式4)
という4次曲線がx軸と2点で接する条件を求めることと同じである。

(1)4次曲線は、座標軸xを平行移動することで、3次の項が無い式になる(式1は既にそうなっている)。
(2)次に、その4次曲線はxの1次の項を無くせば、y軸に関して、x方向の左右で対称な形のグラフになる。そのグラフは、x軸に平行な直線に2点で接する。
  すなわち、式3のxの項の(1-a)=0にすれば、x軸に平行な線に接するグラフになる。
(3)そうすれば、y軸に関して、x軸方向で左右対称なグラフになるので、接点のx座標はαと-αとになる。
つまり、式4は、
y=((x-α)(x+α))+C
y=(x-α+C
というグラフになる。

このC=0とするように、値bを調整したグラフにすれば、そのグラフはx軸に2点で接する。
そのようにグラフを変形するように、aとbを定めれば良い。

【解答1】
(1)
式1に式2を代入すると、
-x+x=ax+b
-x+(1-a)x-b=0 (式3)
この式3が、接点のx座標x=αとx=βとで成り立つ、しかも、αとβそれぞれが重根を持つことが、式2の接線に対して成り立つ条件である。
その条件は、
y=x-x+(1-a)x-b=0 (式4)
という4次曲線がx軸と2点で接する条件を求めることと同じである。

(2)
先ず、
a=1 (式5)
とすると、
式4は、以下の式になる。
y=x-x-b=0 (式6)
この式6のグラフはx軸に平行な線に2点で接するグラフである。
この式6を変形する。
y=(x-(1/2))-(1/4)-b=0 (式7)
(3)
次に、
b=-1/4 (式8)
とすると、
式7は以下の式になる。
y=(x-(1/2))=0 (式9)
この式9はx軸と2点で接するグラフである。
その接点のx座標は、
-(1/2)=0
x=±√2/2

このように、式4で、a=1、b=-1/4としたら、x軸にx=±√2/2で接する式9のグラフになったので、求める直線のaとbは、
a=1 (式5)
b=-1/4 (式8)
である。
(解答おわり)

(補足)
 この問題は、図形を思い描かないで計算力だけで答えを得ようとすると落とし穴に落ちる難問です。
 なぜなら、この問題で、(重なることを許した)2点で接するという問題と考えて計算力だけで答えを計算しようとすると、答えは:
(1)下凸の異なる2点で接する。
(2)下凸の1点と上凸の1点との2点が1点に重なった点で接する。
という2種類の答えが出て来るからです。
その2種類の答えのうち、(1)の答えのみが、異なる2点で接しますので、計算力で求めた答えを選別してやっと答えにたどり着きますので、その回り道をする分だけ時間がかかってしまうという落とし穴に落ちます。
 その落とし穴に落ちないために、先ず、グラフの図形を思い描いて答えの条件を絞り込んだ上で答えを計算することが望ましいです。

【解答2】
 以下で、図形を思い描かないで計算力だけで行なった解答例を示します。

(1)
式1に式2を代入すると、
-x+x=ax+b
-x+(1-a)x-b=0 (式3)
この式3は、
y=x-x+(1-a)x-b=0 (式4)
という4次曲線がx軸と2点で接する条件を求めることと同じである。
この式3が、接点のx座標x=αとx=βとで成り立つ、しかも、αとβそれぞれが重根を持つことが、式2の接線に対して成り立つ条件である。
その条件は、式9であらわされる。
この式9の形をしている式 f を微分した式gを計算する。
この式 g と式 f の最大公約多項式 h が式12になる。
「グラフが直線に相異なる2点で接する」という条件を、上の式13であらわす。
(2)
 次に、ユークリッドの互除法を利用して式 f を式 g で割り算した余り h が式 f と g の最大公約多項式になる条件を導き出す。
ここで、この余りの式 h =式12に関する式13の条件は、以下の式15であらわせる。
余りの式 h が式 f と g の最大公約多項式になる条件は、この式 h で式 g を割り算した余り k が0になることである。
この式16であらわされる余りの多項式 k が0になる。
そのため、以下の式17と18が成り立つ。

(3)
この式17と18を連立して解を求め、その解のうち、式15を満足する解を選別する。
式18から式19が得られる。
この解は式15を満足した。
次に、b=1/12の場合の解を調べる。
この解は式15を満足しない。
よって、求める解は、
a=1,
b=-1/4,
である。
(解答おわり)

リンク:
高校数学の目次


2011年8月20日土曜日

放物線の直交接線の交点の軌跡

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
佐藤の数学教科書「微分」編の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(接線を求める式に重根が含まれるとは限らない。)

【難問】放物線
y= x (式1)
について、互いに直交する2つの接線の交点は定直線上にあることを証明せよ。





(解答の方針)
放物線の接線の傾きy’は微分で求められる。
y’=2x (式2)
1つの接点をA(a,b)とすると、
接線の式は、
y-b=2a(x-a)
y-a=2a(x-a) (式3)
もう1つの接点をB(c、d)とすると、
接線の式は、
y-d=2c(x-c)
y-c=2c(x-c) (式4)
式3の接線と式4の接線が直交する条件は、
(2a)(2c)=-1 (式5)

また、式3の接線と式4の接線の交点をQ(x,y)とすると、
式3と式4の連立方程式が得られる。
y-a=2a(x-a) (式3)
y-c=2c(x-c) (式4)
この連立方程式と、接点の交差をあらわす式5とで全ての条件があらわされる。
(2a)(2c)=-1 (式5)

これらの式3~5は3つの式であるから、未知数を2つ消去した1つの式を作ることができる。
未知数aとcを消去すれば、残るのはxとyだけにかかわる式であり、
その式は曲線か直線のグラフをあらわす。
その式は、aとcがどう変化してもいつも変わらず成りたつ、xとyの関係である。

そのため、式3の接線と式4の接線の交点(x,y)は、その式があらわすグラフ上の点である。

実際に、そのグラフの計算方法を考える。

【注意点】
式3はaに関する二次関数であり、式4もcに関する二次関数であり複雑な式である。
このまま計算すれば、計算が複雑になると予測される。
そのため、工夫する必要がある。

【工夫点】
式3はaに関する式であるが、それは、cを求めるための式(解t=a,c)でもあると解釈する。
y-t=2t(x-t)
-2tx+y=0
-2tx+y=(t-a)(t-c)=0 (式6)

そして、式3のtの解のaとcとの間には、式5の関係があると考える。
すなわち、式6の2つの解aとcの積は、式5から
ac=-1/4
式6の根と係数の関係から、
y=ac=-1/4 (式7)

よって、式6は、
-2tx-1/4=0
-1/4=2tx
t-1/(4t)=2x
x=(1/4){2t-1/(2t)}
x=(1/4){2c-1/(2c)} (式8)

よって、式7から、直交接線の交点Q(x,y)は、式7であらわされる直線上にあり、そのx座標は式8であらわされる。

このように、解答の方針を考えているうちに解答が出来上がってしまった。
そのため、以上を、解答とする。
(解答おわり)

リンク: 
高校数学の目次





2011年8月19日金曜日

2つの放物線の接線が直交する

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
佐藤の数学教科書「微分」編の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(接線を求める式に重根が含まれるとは限らない。)

【難問】2つの放物線
y= x-2x+2 (式1)
y=-x+ax+b (式2)
は、それらの交点の1つPで、接線が互いに直交しているものとする。
このとき、放物線(式2)は、a、bの値に無関係な一定の点Qを通ることを証明し、Qの座標を求めよ。

(解答の方針)
「一定の点Qを通る」というような耳慣れない性質を求める問題が出て来ても、あわてずに、
先ず、与えられた全ての条件を数式で表わす。
そうする理由は、その数式の解き方のパターンは限られていて、
この問題は、どの解き方のパターンで解けば良いかが数式から分かるからです。

交点P(c,d)とする。
交点Pのdが式1と式2とであらわされるから、交点P(c,d)を代入した式1=式2が成り立つ
-2c+2=-c+ac+b (式3)

式1の放物線の接線の傾きは、
y’=2x-2 (式4)
式2の放物線の接線の傾きは、
y’=-2x+a (式5)
点Pでの接線が互いに直交する条件は、次式になる。
(2c-2)(-2c+a)=-1 (式6)

点Q(x,y)は放物線(式2)上にあるので、
y=-x+ax+b (式2)
である。

結局、以下の式の群が得られた。
-2c+2=-c+ac+b (式3)
(2c-2)(-2c+a)=-1 (式6)
y=-x+ax+b (式2)

これら3つの式を使って問題を解くのは、未知数を順次に減らす計算パターンしか無い。
未知数は、a、b、c、x、yである。
式が3つあるので、未知数を2つ消去できる。
そのように未知数を消去する計算をすると、未知数群(a,b,c)のうちで残った1つの未知数と(x,y)とを含む1つの式が得られる。

そのため、この問題は、その1つの式から(x,y)を求める問題であることがわかる。
すなわち、この問題は、
「1つの未知数に関する1つの式から、未知数の値に無関係な一定の点Q(x,y)の値を求める」
という問題である。

問題を言いかえると、
「(1つの)未知数の値が変化しても一定の値の(x,y)によって式が満足される、そういう値(x,y)を求める」
という問題である。

更に問題を言いかえると、
「(1つの)未知数の値がどのように変化しても式がいつも成り立つようにする(x,y)を求める」
という問題である。

ここまで言いかえると、この問題は、
「(1つの)未知数に関する式を恒等式にする条件を満足する(x,y)を求める」
という問題であることがわかる。
それで、この問題を解くめどが立った。

このように、数式を書けば、その数式の解き方のパターンの数が限られているので、どういう問題であるかの、問題の意味が見えて来る。

(解答)
(1)
交点P(c,d)とする。
交点Pのdが式1と式2とであらわされるから、交点P(c,d)を代入した式1=式2が成り立つ
-2c+2=-c+ac+b (式3)
2c-(2+a)c+2-b=0 (式7)

(2)
式1の放物線の接線の傾きは、
y’=2x-2 (式4)
式2の放物線の接線の傾きは、
y’=-2x+a (式5)
点Pでの接線が互いに直交する条件は、次式になる。
(2c-2)(-2c+a)=-1 (式6)
 -4c+2ca+4c-2a=-1
-4c+2ca+4c-2a+1=0
4c-2ca-4c+2a-1=0
4c-(2a+4)c+2a-1=0 (式8)

(3)
点Q(x,y)は放物線(式2)上にあるので、
y=-x+ax+b (式2)
である。

(4)
これらの式を整理して並べると、
2c-(2+a)c+2-b=0 (式7)
4c-(2a+4)c+2a-1=0 (式8)
y=-x+ax+b (式2)

この3つの式から未知数a,b,cのうちの2つの未知数を消去し、残った未知数の式が恒等式になるように(x,y)の値を定める。

ここで、式7と式8から、複雑な式を成す未知数cが消去できることがわかる。
(式7)×2-(式8)を計算する。
4-2b-(2aー1)=0
4-2b-2a+1=0 (式9)

(5)
式2から、
b=y+x-ax (式2’)
この(式2’)を式9に代入してbを消去する。
4-2(y+x-ax)-2a+1=0
この式を未知数aに関して整理する。
a(2x-2)+4-2y-2x+1=0

この式が未知数aに関して恒等式になる条件は、
2x-2=0 (式10)
4-2y-2x+1=0 (式11)

(5-1)
式10から、
2x=2
x=1 (式12)
(5-2)
式12を式11に代入する。
4-2y-2+1=0
3=2y
y=3/2

よって、
Q(x,y)=(1,3/2)
(解答おわり)

【注意】この問題を解くのに、最初に未知数cを消去したが、他の未知数を消去して最後まで未知数cを残しても、同様に、解くことができる。

リンク: 
高校数学の目次

2011年8月13日土曜日

円の接線の公式を微分で導く

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
「微分・積分」の勉強

なめらかな曲線の接線は、微分によって初めて正しく定義できる。
(ある直線と曲線の交点を求める式が重根を持つときその直線が必ず接線であるとは言えない。下図の曲線にO点で交わる直線と曲線の交点を求める式は重根を持つ。しかし、ABを通る直線のような方向を向いた直線でもO点で重根を持って曲線と交わる。)

【研究問題】円の接線の公式は既に学習していると思いますが、
接線は、微分によって初めて正しく定義できるので、
改めて、円の接線の公式を微分により導いてみます。

円 x+y=1 (式1)
この円の式全体を微分します。
その微分の際に、
微分の基本公式
(f・g)’=f’・g+f・g’
を使います。

x’・x+x・x’+y’・y+y・y’=1’ 
x’=1であって、また、1’=0であるから、
上の式は以下の式2になる。
2x+2y・y’=0 (式2)
接点(x,y)での接線の傾きy’は、
(yが0で無い場合は)
式2を変形した以下の式3であらわせます。
接点を(x,y)とすると、式3は以下の式になります。
接線の式は、
点(x,y)は式1を満足するので、
+y=1
∴ yy+xx=1
この、円の接線の公式は既に学んでいる接線の式です。
(y=0の場合は)
y’=∞になって、y’が存在しません。
しかし、y’が存在しなくても、
dx/dy=0になって、dx/dyが存在します。
この場合の接線も上の式であらわされて、
x=±1
であらわされる接線があらわせます。
こうして、円の接線の公式が得られました。

  【研究問題その2】
楕円の式は高校3年の数学ⅢCで学びますが、高校2年でも、その式だけは覚えていても良いと思います。
楕円 x/a+y/b=1 (式1)
です。

この楕円の接線の公式は、微分により導けます。

この楕円の式全体を微分します。
その微分の際に、
微分の基本公式 (f・g)’=f’・g+f・g’
を使います。
x’=1であって、また、1’=0だから、
接点(x,y)での接線の傾きy’は、
(yが0で無い場合は)
式2を変形した以下の式であらわせます。
接点を(x,y)とすると、式3は以下の式になります。
接線の式は、
点(x,y)は式1を満足するので、 
(y=0の場合は)
y’=∞になって、y’が存在しません。
しかし、y’が存在しなくても、
dx/dy=0になって、dx/dyが存在します。
この場合の接線も上の式であらわされて、
x=±a
であらわされる接線があらわせます。
こうして、楕円の接線の公式が得られました。

 なお、下図のように、接線を持つグラフの集合方が、微分可能な点を持つグラフの集合よりも広いので、上の計算の様に、y≠0の場合と、y=0の場合に分けて計算する必要がありました。 
《下図に各種の関数の集合の包含関係をまとめた》

リンク:
高校数学の目次


微分の基本公式

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
「微分・積分」の勉強

関数f(x)であらわされるグラフの傾きは、以下のようにあらわされます。
この傾きは以下に説明する微分によって求めます。

---(定義2.1 「微分積分学入門」(横田 壽)67ページ---
 (注:横田教授が芝浦工業大学を退官したため、この教科書を無料で掲載していたWebページが無くなりました。この本は書店で購入できます。

関数f(x) がx0 を含むある区間で定義されているとき,極限値
が存在するならば,
関数f(x) は, x = x0 微分可能(differentiable) であるといいます.
また,この極限値A を点x0 における微分係数といい,

で表わします.
-----(定義おわり)--------------------------- 

関数f(x) が,ある区間 I の各点で微分可能のとき
f(x) は区間 I で微分可能(differentiable on I) であるといいます.
この場合,区間 I の各点にそこでの微分係数を対応させることにより定まる関数を
f(x) の導関数(derivative) といい,

であらわします。
微分(導関数)を(df/dx)で表すことをライプニッツの記法と呼んでいます。

また、fの微分(導関数)を、f’とも書くことができます。その記法はラグランジュの記法と呼ばれています。

  この微分の定義に従って、関数の微分を考えると、
以下の公式が導かれます。

(基本公式)
(f・g)’=f’・g+f・g’
(証明開始)
(証明おわり)

 この「関数の積の微分の公式」は、ライプニッツ則と呼ばれる微分法の重要な公式です。
ライプニッツが、1684年に「極大と極小にかんする新しい方法」を出版して、その中で微分法を発表し、
ついで1686年に「深遠な幾何学」を出版して積分法を発表しましたが、
その研究の中心核を成す重要な公式です。


(基本公式の適用例)
(f・g)’=f’・g+f・g’
   この基本公式から、以下のことが言えます。

x’=1ですが、
(x)’=(x・x)’=x’・x+x・x’=2x
(x)’=(x・x・x)’=x’・(x・x)+x・x’・x+(x・x)・x’=3x
同様にして
(x)’=4x
(x)’=5x

 ライプニッツが、この「関数の積の微分の公式」を発見して、その応用の広さを知って感動し、『これは数学の1分野となり得る』と思って「微分学」を発表する理由の1つになったのではないかと推察します。

何と!この感動的な基本公式は、高校2年では教わらないことになっているそうです。
(この教育方針は1989年ころから続いているようです)
 この基本公式は、微分の定義を学んだなら、その定義の意味を知るためにも、直ぐ学ぶべき公式と考えます。
 この公式を教えないと言うのは、高校生には微分を教えないということに等しいと考えます。

 微分の本質が教えられていないと、その微分の応用を教えることができません。逆に、微分の応用が教えられない場合は、「微分の本質が教えられていないからである」と、微分の本質が教育できたか否かをチェックできます。
 この基本公式を教えられないというチェック結果から、高校生には微分の本質が教えられていないことが確認できます。

 そういうふうに教育されると、微分は全く理解できないことになると考えます。実際、その通りに、微分は高校生に全く理解されない結果が出ているようです。 

 実際、変数xで表される2つの関数があって、
変数xのある値xにおける、2つの関数のxによる微分係数が、以下の式であらわされて等しい場合に:
この関数を他の変数tで微分した場合に、
が成り立つと普通は考えますが、それが成り立たない場合もあります。
それが成り立つ場合と成り立たない場合を区別する条件は、「合成関数の微分の公式」を学ぶことで理解されますが、それが教えられていません。
高校生に微分が理解されないのも無理ないと考えます。

 このブログを読んでいる、数学を学ぶ後輩に、先輩から一言助言します。
 高校の微分積分の参考書は良くわからない。それに比べて、大学生向けの微分積分の参考書は分かりやすい。大学生向けの参考書は数学の本流にそって、ていねいに、公式は必ず証明した上で学生に使わせるようにしている。新しい知識は、必ず定義したり説明してから紹介している。
 ハッキリ言って、大学生向けの微分積分の参考書は、高校の微分積分の知識を全く知らない学生に理解できるように書かれている。
 しかも、大学生向けの微分積分の参考書の方が、やさしく分かり易い。
 高校の微分積分を勉強するなら、先ず、大学生向けの微分積分の参考書を読むことを推薦します。高校の微分・積分の教科書は分かりにくいだけで無く、間違いも含まれています。読まない方が良いのではないかと考えます。

 以前は、大学生向けの参考書で無料でダウンロードできた、
「微分積分学入門」(横田 壽)
 (注:横田教授が芝浦工業大学を退官したため、この教科書を無料で掲載していたWebページが無くなりました。この本は書店で購入できます。
をお勧めします。 
(しかし、同じ著者の書いた高校生向けの参考書「確実に身につく微分積分(2012年)」の1版は、内容が劣化しているのでお勧めできません。大学生向けの本物の知識の参考書「微分積分学入門(2004年)」を読んでください。)

 その他に、高校2年生が勉強するのに適切な、書店で購入できる微分積分の参考書は:
「やさしく学べる微分積分」(石村園子) ¥2000円
が内容がわかり易くて良いと思います。
この本の36ページから始めて、45ページまで読めば、微分の概念から始めて合成関数の微分の公式まで学ぶことができます。

「やさしく学べる微分積分」(石村園子)の読み方は、 36ページから始まる2章「微分法」の以前のページは斜め読みして、何が書いてあるらしいかを漠然と把握しておいて、2章「微分法」以降を精読することをお勧めします。読んでいるうちに知らない関数や概念が出てきたら、36ページ以前に書いてありますので、探して、その部分を読んで理解するように勉強してください。

リンク: 
高校数学の目次