2017年12月3日日曜日

立体図形の想像力

【立体図形の平面PBRQ】
上図で、平面PBRQを想像するとき、
その平面に交差する、2つの平行する平面ABCDと平面EFGHを広げた下の図を想像してください。
このように上下の平行平面を広げて想像すると、平面PBRQが平面PBR’Qに拡大されて、見易くなります。
そして、その平面PBR’Qに垂直な平面AETSが想像し易くなります。

 2つの平行する平面PBR’Qと平面AB’C’D’が、他の平面EF’G’H’と交差する交線PBと交線QR’については、
両交線は同じ平面PBR'Q上の2つの直線なので、ねじれの関係はあり得ず、交差するか平行線になるかのどちらかです。両交線は、交差することがありえない平行する2つの平面上の直線なので、交線PBとQR’は平行です。

 平面PBR’Qと平面AETSが垂直であるならば、以下の関係が全部成り立ちます。逆に以下の関係のどれかが成り立つなら、両平面は垂直です。
(1)平面AETS上の2本の直線ASと直線AEが、平面PBR’Q上の1本の直線PBに対して垂直である。
(2)また、両平面の交線KLに垂直な、平面AETS上の1本の直線EMが、平面PBR’Q上の全ての直線に垂直な垂線である。
(3)また、両平面の交線KLに垂直な、平面PBR’Q上の1本の直線PBが、平面AETS上の全ての直線に垂直な垂線である。

リンク:
中学数学の目次


0 件のコメント:

コメントを投稿