【2階微分】
左辺の式は、右辺の様に微分を2回続けて行なう操作をあらわしています。
例えば、関数f(x)が以下の式1で定義されている場合:
式2の解を得る計算をすることが2階微分の定義です。
この定義を学生に周知せずに、この記号を使った問題が出題されることがありました。
その場合に、学生が、この2階微分の記号の意味を、以下の式3の意味であると解釈して解答する場合がありました。
式3は、以下の様に求めます。
先ず、以下の式4で変数tを定義します。
この準備をした上で、式3を以下の様に計算します。
(解答おわり)
この解答は、正しい解答の式2と異なり、誤った解答です。
しかし、学生がこの解答をした場合は、
2階微分の記号の定義を周知させずに、この記号を使った問題を出題する教育の方が間違っていると考えます。
リンク:
高校数学の目次
左辺の式は、右辺の様に微分を2回続けて行なう操作をあらわしています。
例えば、関数f(x)が以下の式1で定義されている場合:
式2の解を得る計算をすることが2階微分の定義です。
この定義を学生に周知せずに、この記号を使った問題が出題されることがありました。
その場合に、学生が、この2階微分の記号の意味を、以下の式3の意味であると解釈して解答する場合がありました。
式3は、以下の様に求めます。
先ず、以下の式4で変数tを定義します。
この準備をした上で、式3を以下の様に計算します。
(解答おわり)
この解答は、正しい解答の式2と異なり、誤った解答です。
しかし、学生がこの解答をした場合は、
2階微分の記号の定義を周知させずに、この記号を使った問題を出題する教育の方が間違っていると考えます。
リンク:
高校数学の目次
0 件のコメント:
コメントを投稿