2019年7月10日水曜日

複素数平面の公式を導き出す(5)

http://schoolhmath.blogspot.jp/2015/04/blog-post_2.html
http://schoolhmath.blogspot.jp/2015/04/blog-post_3.html

複素数の計算を推進する以下の公式を導きだしましょう。

(第1優先事項)
 複素数平面のグラフをあらわす方程式を変換する問題は、複素数の計算をせずに、図形の考察で答えを求めるようにしましょう。すなわち、複素数平面のグラフを表わす複素数の方程式同士を計算でつながないで図形の考察でつなげば何とか問題が解けますのでそれを第1優先にしましょう。

(優先順位の2位以下のこと)
 それよりは優先順位が低いことですが、以下のような、複素数平面の計算の公式の導き出し方を身に付けると、少し計算が推進されますので、以下の公式も、簡単に導き出せるようになればとても良いと思います。

(複素数の切替の公式)
(条件)複素数αとβの絶対値が等しい場合:
以下の公式が成り立つ。
(複素数の切替の公式おわり)

(2複素数の非対称共役化の公式)
 この複素数の切替の公式を使うことで、以下の「2複素数の非対称共役化」公式が導ける。

(条件)複素数αとβの絶対値が等しい場合:
以下の公式が成り立つ。



これらの「2複素数の非対称共役化」公式は、以下の問題例の様に使うと良いと思います。
(問題例1)ベクトルの難問を解く
(問題例2)円周角の定理を示す

リンク:
高校数学の目次

0 件のコメント:

コメントを投稿