2017年10月12日木曜日

三角形の中線の長さの公式(中線定理)

【中線の長さの公式(中線定理)】
上図のように、三角形ABCの辺BCの中点Mと頂点Aを結んだ中線AMの長さmに関して、上の式1又は式2が成り立つことを証明しなさい。
 中線定理は、上図の平行四辺形の、
対角線の二乗の和=2(b+c
という公式だと覚えて下さい。

《重要な注意》
 高校で「ベクトルの内積」を学ぶと、中線定理が簡単に導き出せるようになります。そのベクトルの内積を利用する計算方法が中線定理の究極の導出方法になります。ベクトルの内積を学ぶと、中線定理を暗記する必要が無くなります。

 ベクトルは、高校数学のかなめ石となっていますので、早めに学ぶ事をお勧めします。
 ベクトルにより、とても覚えにくかった三角形の余弦定理も覚え易くなります。
 ベクトルを学びましょう。

やさしい高校数学《数Ⅱ・B》
の9章「ベクトル」
が、やさしくベクトルを学べるので良いと思います。


「やさしい高校数学」でベクトルを学ぶことを助言するサイト:
「【期末対策】「ベクトル」を1週間でマスターしよう!玉名高校2年生必見!」
https://www.takeda.tv/tamana/blog/post-207400/

「まず使うのはこちらの参考書です。
《やさしい高校数学 〈数Ⅱ・B〉 - はじめての人も学び直しの人もイチからわかる》

 ベクトルという分野は、全くゼロの状態から教科書を読み進めて問題を解いても、多分ちんぷんかんぷんだと思います。

 でも安心してください。それが普通です。そういう分野です。

 そんな方はまずこの参考書から始めましょう。こちらは解説・説明が非常に丁寧で、ベクトルの概念が分かりやすく解説されています。

 イメージとしては、分かりやすい先生の授業がそのまま参考書になったようなもので、ところどころ数学が苦手な生徒からの質問やツッコミが入ります。

まずはこれを読み進めましょう。

 ベクトルはこの参考書の9章で全部で32個のテーマ(約130ページ)に分かれています。

 なので、1日8テーマずつ読み進めてみてください。そうすれば4日ですべて読み終わる計算になります。」

 以上のように助言されていますが、
種々の定理を覚えるための「ベクトルの内積の計算」までを理解するためには、
そのうちの35ページを読むだけで足りる。
737ページから772ページまで読めば良い。(1日で読めると思います)。



(補足1)

 中線定理は覚え易い定理ですが、高校入試問題で中線定理を使うよう誘導している問題を見ると、その誘導にもかかわらず、中線定理を使わないでも解けるようにした問題を出題しています。
 その出題高校の意図を推測すると、
「単に中線定理を覚えて知っている学生よりも、想像力豊かで知能が高く融通性に富んだ学生の方を合格させたい」
という意図があるように考えられます。
 そのため、この中線定理を学ぶ目的は、
この中線定理を証明しようとする努力により知能を高めるホルモンが分泌されて知能を高めること、
を第1の目的にするのが良いと考えます。
 そのため、この定理を自力で証明するまで解答を見ずに、知能ホルモンの分泌を続けるのが良いと考えます。

 また、中線定理を一旦覚えても、他の定理を覚えていくと、記憶がごちゃごちゃになって、結局、覚えたハズの中線定理を忘れ去ってしまいます。中線定理の暗記は無駄で、それを速やかに導き出す道(根源的な導出の道)を覚える事が大切です。中線定理を使う必要がある場合には、毎回、その道をたどって速やかに中線定理を導き出して使う、その導出の道を覚えましょう。


この問題の解答は、ここをクリックした先のページに書きました。

リンク:
中学数学の目次

高校数学の目次

0 件のコメント:

コメントを投稿