2011年7月17日日曜日

指数関数と対数関数 第5講3節 log(3)4とlog(4)5

佐藤の数学教科書「指数関数・対数関数」編の勉強

【問1】log4とlog5の大小関係を求めよ。

(解答の方針)
(1)対数関数の問題を考える場合は、対数の底をそろえて比較する。
(2)更に、対数の真数をそろえて比較する。
(3)主に、{(対数の真数)/(対数の底)}を比較の対象にする。

L≡log
H≡log
この2つの対数関数を比較するため、先ずLの対数の底(=3)をHの対数の底(=4)にそろえることを考える。
 L≡log
=log(3・(4/3))
=log3+log(4/3)
=1+log(4/3)
L>M≡1+log(4/3)
(上の結論は、対数関数の真数をそろえて、底を変えて比較した結論です)
M≡1+log(4/3)
M>N≡1+log(5/4)
(上の結論は、対数関数の底をそろえて、真数を変えて比較した結論です)
N≡1+log(5/4)
=log4+log(5/4)
=log5=H

∴ log4>log
(解答おわり)

リンク:
相加平均と相乗平均の不等式
高校数学の目次

0 件のコメント:

コメントを投稿