2011年7月19日火曜日

指数関数と対数関数 第5講3節 log(3)4とlog(4)6

佐藤の数学教科書「指数関数・対数関数」編の勉強

【問2】log4とlog6の大小関係を求めよ。

(解答の方針)
対数関数の大小は、以下の公式を(以下の数の範囲で)利用することで必ず解くことができる。

底について  1<a≦A
真数について 1<b≦B
である場合は、
0<logb≦log
が成り立つ。
 この数値範囲では、等号が成り立つのは、a=Aかつb=Bの場合のみ。

この公式を、以下のように利用することで、大小関係を必ず解くことができる。
(1)底を1より大きくし、真数も1より大きくした式に変換した上で、
(2)小さい方(と思われる)対数関数の底を、他の対数関数の底よりも大きくする。
(3)大きい方(と思われる)の対数関数がlogC≡Hであり、
小さい方(と思われる)の対数関数がlogD≡Lである場合、
対数関数Hの真数Cと底aを使って、1より大きい真数であって、なるべく1に近い真数のC/aを作る。
それを、対数関数Lの真数Dと底Aを使って同じ形に作った真数D/Aと比べる。
このように真数を変換することは、元の対数関数をm倍にした値からnを引き算することを意味する。
mH-n=log(C/a 
mL-n=log(D/A

対数関数HがLより大きければ、
mとnを十分大きくして、1より大きな真数で、なるべく1に近い真数を作れば、
対数関数Hから作った真数は必ず、対数関数Lから(同様にして)作った真数よりも大きくなり、先の公式にあてはまるようになる。

(その理由は、大きなmで対数関数の大小関係が拡大されているので、対数関数HとLの真数の値は、対数の底の違い以上に大きさが異なるようになるためである。
なお、nを引き算する理由は、対数関数の値が同じなら、底が異なっても真数を同じにするためである。)


そのため、この方法を使えば、必ず、対数関数の大小関係を求めることができる。

(解答開始)
L≡log
H≡log
(1)この2つの対数関数の大小関係は、多分H>Lである。
そのため、対数関数Hの底を、Lの底=3より小さくする。
H≡log6=(1/2)log
2H=log
2L=2log4=log16

(2)真数を1に近づける(ただし1より大きくする)ために、対数関数から2を引き算する。
2H-2=log(6/4)=log(3/2)
2L-2=log(16/9)

(3-1)対数関数を更に2倍にする。
4H-4=log(9/4)
4L-4=log(256/81)

(3-2)真数を1に近付ける(ただし1より大きくする)ために、更に1を引く。
4H-5=log(9/8)
4L-5=log(256/243)

(4H-5)の真数B=9/8=1.1・・・
(4L-5)の真数b=254/243=1.05・・・
よって、B>b

一方、
(4H-5)の底a=2
(4L-5)の底A=3
すなわち、A>a

よって
(4H-5)=logB>logb=(4L-5)
∴ H>L
log6>log
(解答おわり)

【別解】
(解答の方針)
対数関数の逆数は、底と真数が入れ替わった式になることを利用する。
1/L=log
1/H=log

この関係を利用することで、先の計算方針の:
「(3)・・・対数関数Hの真数Cと底aを使って、1より大きい真数であって、なるべく1に近い真数のC/aを作る。」 
を補う以下の計算方針によって、対数の大小関係を求めることができます。
(3)’・・・対数関数Hの真数Cと底aを使って、1より大きい真数であって、なるべく1に近い真数のa/Cを作る。
(すなわち、 1より小さい真数であって、なるべく1に近い真数のC/aを作る。)

(解答開始)
(1)この2つの対数関数の大小関係は、多分H>Lである。それは、(1/H)<(1/L)ということを意味する。対数関数の大小関係を示す先の公式にあてはめるために、対数関数(1/L)の底=4は、(1/H)の底=6より小さくする必要があるが、既に、底の関係は、この関係を満足している。

(2)次に、1/Lの真数3のm乗を底4のn乗で割り算して、1より大きい真数であって、なるべく1に近い真数を作る。
/4=81/64が手ごろだと思う。
すなわち、
(4/L)-3=log(3/4)=log(81/64)
=log(1.2・・・)

(4/H)-3=log(4/6)=log(2/(2×3)
=log(2/3)=log(32/27)=log(1.1・・・)

対数関数(4/L)-3の底は4で真数は1.2・・・であり、
対数関数(4/H)-3の底は6で真数は1.1・・・であるので、
公式にあてはまって、
対数関数(4/L)-3>(4/H)-3
よって、(1/L)>(1/H)
0<L, 0<H であるので、
∴ L<H
log4<log
(解答おわり)

リンク:  
高校数学の目次

0 件のコメント:

コメントを投稿