2011年11月20日日曜日

第5講:高次方程式(2)1のn乗根を複素数平面で求める




佐藤の数学教科書「式と証明・複素数」編の勉強
第5講 高次方程式

【問1】X=1の解を求めよ。
-1=0

この方程式の4つの解を複素数平面上で表示すると、以下の図のようになります。

上の図で、
=1,X=i,=-1,X=-iが、
-1=0
の4つの解です。
は、複素数平面上で、0と1を結ぶ実軸上の線分から原点を中心にして単位円上を左回りに90度(π/2ラジアン)回転した位置にあり、更に、順次に90度回転した位置が、この方程式の解です。

と0を結ぶ直線が0と1を結ぶ実軸上の線分と成す角90度を4倍すれば360度になり、実軸に戻ります。
と0を結ぶ直線が0と1を結ぶ実軸上の線分と成す角180度を4倍 すれば360度×2になり、実軸に戻ります。
と0を結ぶ直線が0と1を結ぶ実軸上の線分と成す角270度を4倍 すれば360度×3になり、実軸に戻ります。

複素数を4乗するということは同じ複素数を4回掛け算することであり、複素数の掛け算では偏角が足し算されるので、複素数を4乗すれば、その複素数の偏角が4回足し算されて4倍になりました。
すなわち、
=1の複素数の解は、1の偏角を360度、360度×2、360度×3と考えて、その偏角を4分の1の90度、180度、270度にし、その偏角を持つ絶対値1の複素数の値を図から求めれば、それがX=1の複素数の解になります。

【問2】X=1の解を求めよ。
-1=0

この方程式の5つの解を複素数平面上で表示すると、以下の図のようになります。

上の図で、

が、X-1=0
の5つの解です。
は、複素数平面上で、0と1を結ぶ実軸上の線分から原点を中心にして単位円上を左回りに2π/5ラジアン回転した位置にあり、更に、順次に2π/5rラジアン回転した位置が、この方程式の解です。

と0を結ぶ直線が0と1を結ぶ実軸上の線分と成す角2π/5ラジアンを5倍すれば2πになり、実軸に戻ります。
と0を結ぶ直線が0と1を結ぶ実軸上の線分と成す角2π×(2/5)ラジアンを5倍すれば2π×2になり、実軸に戻ります。
以下、同様に、XとXは、2π×3、2π×4になり、実軸に戻ります。

結局、
=1の複素数の解は、2π/5ラジアン×整数倍の偏角を持つ絶対値1の複素数の値を図から求めれば、それがX=1の複素数の解になります。

同様に考えることで、
=1の複素数の解は、2π/nラジアン×整数倍の偏角を持つ絶対値1の複素数の値を図から求めれば、それがX=1の複素数の解になります。
すなわち、値1の点を頂点の1つにする正n角形の各頂点が、その方程式の解になります。 

【問2(b)】=1の解を、三角関数の値も計算して求めること。

この解の求め方を次のページで解説します。

 しかし、次のページを直ぐには見ないで、
しばらくここに留まって、この解を自力で求める努力をしてください。
 

リンク:
高校数学の目次

0 件のコメント:

コメントを投稿