2011年11月20日日曜日

第6講:複素数平面(3)複素数の掛け算で三角関数の加法定理を導く




佐藤の数学教科書「式と証明・複素数」編の勉強

s=w・z
というように、複素数wに複素数zを掛け算して複素数sを計算する場合を考えます。
上図で e はネイピア数です。
また、 e の虚数乗がcosとi・sinで表される公式はオイラーの公式と呼ばれている、とても便利な公式です。

(複素数の極形式のパラメータの定義)
複素数平面で複素数zが、0と1を結ぶ線分(実軸)から、0を中心に角度θ回転した位置にあるとき、
その角度θを偏角と呼び、
θ=arg(z)とあらわします(左回りを正の角度にします)。

また、複素数zの絶対値は|z|とあらわします。

先ず、各複素数の偏角を以下のように名づけておきます。
arg(s)≡α
arg(w)≡β
arg(z)≡θ
これらを使って各複素数が以下のようにあらわせます(複素数の極形式での表示)。
s=|s|cos(α)+|s|sin(α)・i
w=|w|cos(β)+|w|sin(β)・i
z=|z|cos(θ)+|z|sin(θ)・i

その複素数の掛け算s=w・zの場合には、以下の公式が成り立ちます。
arg(s)=arg(w)+arg(z)
|s|=|w|・|z|

上の2つの式を書きかえると以下の式になります。
α=β+θ   (式1)
|s|=|w|・|z|   (式2)

佐藤の数学教科書では、三角関数の加法定理を使って、(式1)が成り立つことを説明しています。
つまり、(式1)の公式は三角関数の加法定理と深い関係があります。
それで、上の(式1)を利用すると、三角関数の加法定理が以下のようにして簡単に導き出せるので三角関数の加法定理が覚えやすくなります。

以下で、複素数wとzの掛け算を計算して、その結果を複素数sと比較します。
ここで、加法定理との関係を分かり易くするため、複素数wとzの絶対値の
|w|=|z||s|=1
とする。
w・z=(cos(β)+sin(β)・i)・(cos(θ)+sin(θ)・i)
={cos(β)・cos(θ)-sin(β)・sin(θ)}
+{cos(β)・sin(θ)+sin(β)・cos(θ)}i
複素数w・zと、それに等しい複素数sとは、その実数部分が等しいので、その関係をあらわす1つの式を導き、更に、その虚数部分が等しいので、その関係をあらわす1つの式を導きます。それにより、以下の2つの関係式が導き出せます。
cos(α)=cos(β)・cos(θ)-sin(β)・sin(θ)
sin(α)=cos(β)・sin(θ)+sin(β)・cos(θ)
角αについて(式1)の関係があるので、それを代入して上の2つの式を書き直します。
cos(β+θ)=cos(β)・cos(θ)-sin(β)・sin(θ)
sin(β+θ)=cos(β)・sin(θ)+sin(β)・cos(θ)
上の2つの式が、それぞれ、cosの加法定理と、sinの加法定理と呼ばれています。

cosの加法定理とsinの加法定理を、以上の手順で素早く導き出せるように、以上の導き方を覚えておきましょう。
そうすれば、覚えるのにとても苦労する三角関数の加法定理が、覚えやすくなります。

リンク:
高校数学の目次

0 件のコメント:

コメントを投稿