2014年3月11日火曜日

数学の力とは

大人のための数学勉強法

「どんな問題も解ける10のアプローチ」

問題集の使い方
●「わかる」と「できる」は違う
●問題集の「解答」について
●問題集に載っている問題は試験に出ない
●なぜできなかったのか?
●問題ができたときは

 の内容が面白い。

 そして、数学ができるようになる大切なポイントを教えられました。

①問題が解けない。
②解き方を見る。
③再度問題を解く。
④問題が良く解けた。

 この①から④を繰り返して数学を学んでいるつもり、
という数学の勉強方法は、全然数学の勉強になっていない。

 たしかに、数学の解き方を1つ1つ覚えても、ある程度問題が解けるようになる。
しかし、それでは、本当の数学を学んだことにはならない。

 その問題の解き方を覚えるのは数学を学ぶ優先順位の第2番目です。

 数学を学ぶ第1の優先順位は、その問題に初めて直面したとき、なぜ解けなかったのかの原因を分析して、
その問題の解き方を自力で導き出す根源的方法を探ることにあります。

 その根源的方法を知っていれば、その問題に初めて出会ったときにもその問題が解けただろう、そういう方法を見つけ出す。数学の技(わざ)を磨くことです。

 そして、その技で解けるかもしれない(解き方自体も)新しい問題を探して、その問題が解けるようになっていることを調べます。
 その、根源的方法を使って、解き方が新しい問題が解けてはじめて、最初に解けなかった問題が解けるようになったと考えるのです。
 解き方を教わって解けるようになった問題は、解けるようになったものとは見なさないのです。

 そういう技を磨くには、1つ1つの未知の問題が貴重で、なるべく解答を見ないで解きます。
解答を見てしまったら、その問題を解く数学の技を磨く材料にはならなくなってしまうからです。

 だから、そういう数学の勉強をしている人に、問題の解き方を見せてしまうというのは、とても悪い事をしているとも考えられます。

 このブログでは、
今までは、問題と、その解答とを併記して説明していましたが、
それは、数学の考える力、問題を解く力を養うのには悪い作用しか与えて来なかったのではないかと反省しています。

 これからは、このブログは、過去の記事にまでさかのぼって、
問題と、その解き方とは、分けて書いて、
読者が、先ずその問題を自力で解くことができるようにし、数学の技を磨くチャンスを読者から奪わないようにします。

 それと、その問題の解き方の説明においても、単に問題の解き方を提示するのでは無く、
その解き方が、どのような方法を用いることで導き出せるかを説明するようにしたいと思います。


(数学の問題を解く根源的方法)
 数学の問題が解ける根源的方法は、簡単に導き出せる公式をことごとく発見して、その公式を速やかに導き出せるようにしておくことです。
 その公式を導き出すほんの少しのヒントを覚えて、そのヒントに従ってその公式を直ちに導き出せるように訓練しておくことです。
 そうすれば、少しのヒントを覚えるだけで、とても多くの公式を覚えているのと同じ効果が得られます。とても多くの公式を覚えているのと同じなので、多くの問題が楽に解けます。

 数学の公式は覚えられません(覚えていてもすぐに忘れる)。特に、覚えていた公式に似ている公式を覚えようとする場合に、その新しい公式に似ている、旧くから覚えていた公式は、新しい公式を覚える必要のために忘れ去られます。
 そういうふうに、数学の公式は覚えられないものです。
 そのため、忘れかけている不確かな公式を思い出して使うのでは無く、毎回公式を導き出して使うと良いです。公式を出来るだけ速やかに導き出せるように、公式を導き出す道を洗練させておくのが、ある意味、「公式を覚える」作業です。

 新しい問題が解けなかったら、その問題を解くために役立つ公式で、未だ知らなかった、速やかに導き出せる、隠れた公式を探します。
 あるいは、毎回導出する公式の導出に時間がかかる場合は、その公式を導出し易くする、速やかに導き出すために役立つ公式を探すのです。
 その新しい公式が見つかったら、その新しい公式を導き出すほんの少しのヒントを覚えて、そのヒントに従ってその公式を直ちに導き出して使えるように練習します。
 これが、数学の問題が解けるようになる根源的な方法だと思います。

 すなわち、新しい問題が解けなかったら、あるいは、毎回導出している公式の導出に時間がかかっている場合は、
その問題だけが解けるその問題の解き方だけの解答を覚えるのでは無く、
①できるだけ多くの問題を解くために使えて、その問題を解くためにも使える公式で、
②少しのヒントで速やかに導き出せる公式を発見する。
③そして、その公式を速やかに導き出して問題を解くのに使えるように練習するのです。


リンク:
高校数学の目次
 

0 件のコメント:

コメントを投稿