2018年6月2日土曜日

ひし形の対角線ベクトル変換公式

【ひし形の対角線ベクトル変換公式】
以下の図の、長さの等しいベクトルaとbでひし形を作る。
 この場合に、以下の式の関係が成り立つ。
場合分けを不用にする統一的記述では以下の式になる。
 (ひし形の対角線ベクトル変換公式おわり)

(証明開始)
この式1の左辺と右辺のベクトルの成分を比較する。
式1の右辺と左辺のベクトルの成分が一致する。
そのため、式1の右辺と左辺は等しい。 

式2の左辺と右辺のベクトルの成分を比較する。


式1の右辺と左辺のベクトルの成分が一致する。
そのため、式1の右辺と左辺は等しい。 
(証明おわり)

(補足)
この公式は、
であることをあらわしています。
これは、ひし形の対角線の直交の公式をあらわしています。
そのため、この公式は、ひし形の対角線の直交の公式を言い換えた公式であるという意味を持ちます。

リンク:
ひし形の対角線の直交の公式
円の極の座標の解の変換 
複素数平面が、円の2つの接線の交点問題を簡単にする 
高校数学の目次

0 件のコメント:

コメントを投稿