2017年8月18日金曜日

高校2年生も覚えるべき置換積分法

https://schoolhmath.blogspot.jp/2017/06/blog-post_2.html
https://schoolhmath.blogspot.jp/2017/08/blog-post_17.html
「微分・積分」の勉強

(6)積分の知識:
 「置換積分法」

「微分積分学入門」(著者:横田 壽)の108ページ近くに、置換積分法が書いてあります。
(注:横田教授が芝浦工業大学を退官したため、この教科書を無料で掲載していたWebページが無くなりました。この本は書店で購入できます。

3.2 置換積分法(integration by substitution)
不定積分∫f(x)dx を求めるときに,

f(x)dx の x を媒介変数 t の関数g(t) に置き換えることにより,
f(x)dx を f(g(t))g’(t)dt という,積分し易い形に変形することを置換積分法(integration by substitution) と いいます.

定理3.4 (置換積分法)
f(x) が連続であるとき,

x = g(t) とおくと,g(t) が微分可能であれば,

が成り立つ.


(証明開始)
(1)先ず、xを媒介変数 t の関数g(t)で表す。
xはtが変化したときにどのくらい変化するか調べるため、x=g(t)をtで微分する。
x=g(t)がtで微分可能((Δx/Δt)の極限が有限の値になる)なら、
Δxが以下の式であらわされる。
(2)その場合に、以下の式が成り立つ。
ただし、xで積分するxの積分範囲がg(a)からg(b)までの場合に、
tで積分するtの積分範囲は、aからbまでにする。
(証明おわり)

(置換積分の例題)
下図の関数の積分を考えます。
この積分は、以下の様に変数xを変数tに変換する置換積分で計算することができます。
=2
です。
この変数変換をすると、A点からB点までの積分は、下図の関数の積分に変わりました。
そのため、積分が簡単になり、
積分結果が2になりました。
(例題おわり)

(補足)
この関数の積分は、A点からC点までの範囲までならばリーマン積分が可能です。
その積分可能範囲は、C点をB点に近付けた場合の積分結果の極限値をB点までの積分値であると、積分可能範囲の定義を拡張できます。

 一方で、この積分は、以下の様に変数xを変数tに変換する置換積分で計算できました。
この変数変換をすることで、A点からB点までの積分は、下図の関数の積分に変わりました。
上図の積分の場合、A点からB点までの範囲での関数の値が有限値なので、リーマン積分が可能です。
この変数tに変換した積分のA点からB点までの積分可能範囲が、変数xでの積分の、拡張した積分可能範囲と一致しました。

 また、もう1つ注目すべき点は、
(1)xで積分する元の被積分関数は、x=0で微分不能、かつ、関数の値が存在しない関数でしたが、
(2)置換積分で変換した結果の、tで積分する被積分関数は、t=0での値が有限で値が存在する関数に変わりました。

リンク:
高校数学の目次

0 件のコメント:

コメントを投稿